
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

APPROXIMATING THE CHROMATIC
NUMBER OF AN ARBITRARY GRAPH
USING A SUPERGRAPH HEURISTIC

by

Loren G. Eggen

June 1997

Advisor: Craig W. Rasmussen
Second Reader: Harold M. Fredricksen

Approved for public release; distribution is unlimited

19980102 144
MtttlGÖi?*18*

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,
to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204,
Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June, 1997

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE APPROXIMATING THE CHROMATIC NUMBER
OF AN ARBRITARY GRAPH USING A SUPERGRAPH HEURISTIC

6. AUTHORS Eggen, Loren G.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5216

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT(m<mmum ZOO words)

We color the vertices of a graph G, so that no two adjacent vertices have the same color. We would like to do
this as cheaply as possible. An efficient coloring would be very helpful in optimization models, with applications
to bin packing, examination timetable construction, and resource allocations, among others. Graph coloring
with the minimum number of colors is in general an NP-complete problem. However, there are several classes
of graphs for which coloring is a polynomial-time problem. One such class is the chordal graphs. This thesis
deals with an experimental algorithm to approximate the chromatic number of an input graph G. We first find
a maximal edge-induced chordal subgraph H of G. We then use a completion procedure to add edges to H, so
that the chordality is maintained, until the missing edges from G are restored to create a chordal supergraph
S. The supergraph S can then be colored using the greedy approach in polynomial time. The graph G now

inherits the coloring of the supergraph S.

14. SUBJECT TERMS Chordal Graphs, Edge Completion Sequences,
Elimination Orderings

15. NUMBER OF
PAGES 76

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

APPROXIMATING THE CHROMATIC NUMBER OF
AN ARBITRARY GRAPH USING A SUPERGRAPH

HEURISTIC

Loren G. Eggen
Captain, United States Army

B.A., Saint Cloud State University, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June 1997

Author:

Approved by: UJU2-
C(aig W. RasmussenTThesis Advisor

^-*— &r_j^
Harold M. Fredricksen, Second Reader

fa ???. {Je^^lis
W. M. Woods, Chairman

Department of Mathematics

in

IV

ABSTRACT

We color the vertices of a graph G, so that no two adjacent vertices have the

same color. We would like to do this as cheaply as possible. An efficient coloring would

be very helpful in optimization models, with applications to bin packing, examination

timetable construction, and resource allocations, among others. Graph coloring with

the minimum number of colors is in general an NP-complete problem. However, there

are several classes of graphs for which coloring is a polynomial-time problem. One

such class is the chordal graphs. This thesis deals with an experimental algorithm

to approximate the chromatic number of an input graph G. We first find a maximal

edge-induced chordal subgraph H of G. We then use a completion procedure to add

edges to H, so that the chordality is maintained, until the missing edges from G are

restored to create a chordal supergraph S. The supergraph S can then be colored

using the greedy approach in polynomial time. The graph G now inherits the coloring

of the supergraph S.

VI

DISCLAIMER

The computer programs in the Appendices are supplied on an "as is" basis,

with no warrantees of any kind. The author bears no responsibility for any conse-

quences of using these programs.

VI1

Vlll

TABLE OF CONTENTS

I. INTRODUCTION 1

A. DEFINITIONS 1

1. Undirected Graph 1

2. Miscellaneous Graphs 2

3. Graph Parameters 2

4. Chordal Graphs 3

5. NP-Complete Problems 4

II. EXISTING ALGORITHMS 7

A. EXACT ALGORITHMS . 7

1. Brute-Force Coloring 7

2. Greedy-Backtracking Coloring 8

B. APPROXIMATION ALGORITHMS 8

1. Independent Sets 8

2. Vertex Covers 9

3. Maximum Clique 10

4. Minimal Weighted Coloring of Chordal Subgraphs 10

5. Edge-Maximal Chordal Subgraph 11

III. A SUPERGRAPH HEURISTIC 13

A. THE IDEAL ALGORITHM 13

B. THE BASIC ALGORITHM 14

1. Random Graph Generation 15

2. Test for Connectedness 15

. 3. Maximal Chordal Subgraph Computation 16

4. Missing Edges 17

5. Maximum Clique 17

6. Greedy-Backtracking Coloring Scheme 18

IX

7. Maximum Cardinality Search 19

8. Edge Completion 19

9. Greedy Coloring 20

C. IMPROVED ALGORITHMS 20

1. Vertex Sort Algorithm 20

2. Missing Edge Algorithm 20

D. COMPUTATIONAL COMPLEXITY . 21

IV. EXPERIMENTAL RESULTS 23

A. GRAPH ORDER 23

B. GRAPH DENSITY 24

C. CONCLUSION 25

V. FURTHER RESEARCH 29

APPENDIX A. PROGRAM FOR BASIC ALGORITHM 31

APPENDIX B. PROGRAM FOR THE VERTEX SORT ALGORITHM 33

APPENDIX C. PROGRAM FOR MISSING EDGE ALGORITHM 35

APPENDIX D. GRAPH COMPLETION FUNCTION 37

APPENDIX E. CONNECTED GRAPH FUNCTION 39

APPENDIX F. GREEDY-BACKTRACKING COLORING FUNC-

TION 41

APPENDIX G. GREEDY COLORING FUNCTION 43

APPENDIX H. MAXIMAL CHORDAL SUBGRAPH FUNCTION 45

APPENDIX I. MAXIMUM CLIQUE FUNCTION 47

APPENDIX J. MAXIMUM CARDINALITY SEARCH 49

APPENDIX K. MISCELLANEOUS FUNCTIONS 51

LIST OF REFERENCES 55

INITIAL DISTRIBUTION LIST 57

LIST OF FIGURES

1. Undirected graph G, subgraph H, and induced subgraph GA 2

2. Undirected graph G, complement graph G, and complete graph K5. . . 3

3. Explanation of the Supergraph Heuristic 14

4. Demonstration of the Supergraph Heuristic 15

5. Basic Algorithm's Relative Error in estimating x 23

6. Vertex Sort Algorithm's Relative Error in estimating x 24

7. Missing Edge Algorithm's Relative Error in estimating x 25

XI

XI1

LIST OF TABLES

I. Computational Complexity 21

II. Experimental Results of the Supergraph Heuristic 27

Xlll

XIV

LIST OF SYMBOLS AND ACRONYMS

\v\ The cardinality of a set V.

G=(V, E) The graph G with vertex set V and the edge set E.

uv An edge between the vertices u and v.

Adj(v) The adjacency set of vertex v.
N(v) The neighborhood of vertex v;N(v) = {v} + Adj(v).

G The complement of an undirected graph G.

Gs The subgraph of G induced by S.

Kn The complete graph on n vertices.
a(G) The independence number of G.

ß(G) The vertex cover number of (7.
A(G) The maximum vertex degree.

XG) The chromatic number of G.

u[G) The clique number of £r.
0(f(m)) Computational complexity on the order of f(m).

P The class of deterministic polynomial-time problems.
NP The class of nondeterministic polynomial-time problems.

ASP Ammunition Supply Point
BFS Breadth-first search
DFS Depth-first search
MCS Maximum cardinality search
PEO Perfect elimination ordering

XV

XVI

ACKNOWLEDGMENTS

I would like to express my appreciation of the support and guidance received

from the faculty, staff, and students in the Mathematics Department at the Naval

Postgraduate School. I am most grateful to Craig W. Rasmussen for his helpfulness

and generosity.

xvn

XV111

I. INTRODUCTION

Large-scale scheduling and timetable problems arise in many activities, from

crew scheduling on airlines to scheduling of classroom periods and teachers at Uni-

versities to register allocations in a computer CPU. These are often modeled as graph

coloring problems that are then subjected to a variety of strategies for solution by

computer. For example, consider the storage problem at military ammunition supply

points, where certain types of ammunition cannot be stored in the same bunkers.

What is the minimum number of bunkers needed at an ammunition supply point to

ensure the safe storage of all types of ammunition? We use a graph-theoretic model to

formulate this problem. We construct a graph G, with vertices representing ammuni-

tion types and where the existence of edges between vertices represents their pairwise

incompatibilities. This problem reduces to that of finding an optimal coloring of the

vertices of G. These types of optimization models have applications in bin packing,

examination timetable construction, and resource allocations. Unfortunately there

is no known algorithm for this problem which will predictably provide an optimal

solution in a reasonable time.

A. DEFINITIONS
The graph terminology used in this thesis can be found in most textbooks on

graph theory. For undefined terms and notation see Bondy and Murty [Ref. 1], or

West [Ref. 2].

1. Undirected Graph
A simple undirected graph G = (V, E) consists of a vertex set V(G) = {vx,..., vn}

and an edge set E(G) = {ei,...,em}, where each edge is an unordered pair of ver-

tices (see part (a), Figure 1). We use uv to denote the edge {u,v}. When we have

uv e E(G), then we say that "u is adjacent to u" and "u is adjacent to u". The

vertices of an edge e are its endpoints. If the endpoints are the same this edge is

G-(V.E) G=(V,E) GA=(V,E')
n=5t m=7 E=(ab,bc,ce,de) A=(b,c,d,e)

Figure 1. (a) Undirected graph G of order n and size m, (b) A subgraph H with edge
set Et, (c) An induced subgraph with vertex set A.

considered a loop. In a graph G, a list of vertices [v0, v1,v2,..., vt] is a path of length /

from vertex v0 to v, if {u,-_i, t>,-} € E(G), for alH = 1,2,...,/. A path is called closed

if v0 = vi. A cycle is a simple closed path of distinct vertices. A graph G is connected

if between any two vertices there exists a path in G joining them. The neighborhood

of v is the set of adjacent vertices Adj (v) and is denoted N(v). We consider only

connected, loopless, finite graphs without multiple (redundant) edges.

2. Miscellaneous Graphs
The order of a graph G, denoted |V|, is the number of vertices in G. We use

\E\to denote the number of edges, or the size of G. The complete graph of order n is

denoted Kn (see part (c), Figure 2), and is an undirected graph in which every pair

of vertices is adjacent. The complement of a graph G is the graph G = (V, E), where

~E = {(x,y) eV\x^y and (x,y) $ E} (see part (b), Figure 2). A subgraph of G is a

graph H, such that E(H) C E(G), V(H)CV (G)(see part (b), Figure 1). If A C V,

the A-induced subgraph of G is the graph GA, such that E (GA) = {^2/ € # (C) k €

V {GA) and y G V (GA)} (see part (c), Figure 1).

3. Graph Parameters
For the following definitions let G = (V, E) be an undirected graph. A coloring

of a graph is an assignment of "colors" to the set of vertices V so that adjacent

vertices have different colors. The symbol x{G) denotes the smallest number of colors

b d«^ i \ T?*b d

G=(V,E) G=(V,E) K5

Figure 2. (a) Undirected graph G, (b) Complement graph G with edge set E, (c)

Complete graph K5.

required and is called the chromatic number of the graph G(see figure4). A subset

V (H) C V(G), with \H\ = q, is a q-clique if it induces a complete subgraph Kq.

A clique # is maximal if there is no clique of G which properly contains H as a

subset and H is maximum if no other clique in G has a larger order. The number of

vertices in a maximum clique of G is called the clique number of G, and is denoted

u (G). An independent set S C V(G) is a set of vertices in which no two vertices are

adjacent. The number of vertices in a independent set of maximum order is called

the independence number of G, denoted a iß). A subset K C V (G) such that if

xy e E (G), then x £ K or y € #, is called a uertez cower. A vertex cover for G is a

set of vertices that is collectively incident to all the edges in E(G). The vertex cover

number of G is the number of vertices in the minimum vertex cover, denoted ß (G).

4. Chordal Graphs
A graph G is chordal (or triangulated) if it does not contain any cycle of length

greater than three as an induced subgraph[Ref. 3]. An ordering of the vertex set V,

with n = \V\, is {v0, vx, v2,..., vn}. A vertex v is simplicial in G if N (v) is a complete

subgraph. If 5 is an ordering of V such that each Vi is a simplicial vertex of the induced

subgraph <?„;,...,„„, then it is called a perfect elimination ordering (see Figure 4). A

successor of u,- with respect to the ordering 8 is a vertex Vj € iV(u;), where i < j,

and is denoted Suc(vi)[Ref. 4]. A chordal graph G is of the class of perfect graphs,

in which u {GA) = x {GA) for all A C V (G). The class of perfect graphs have been

extensively researched since the 1960's by well-known mathematicians. Golumbic's

book "Algorithmic Graph Theory and Perfect Graphs" [Ref. 3] does an excellent

job in explaining the difficult practical problems related to the structure of perfect

graphs.

5. NP-Complete Problems
The class of problems with complexity bounded by a polynomial in the size

of the input is denoted P. We consider a problem solvable in polynomial time by

a deterministic algorithm as being tractable. That is, for each input of size n the

worst-case running time is 0(nk) for some constant k. We define problems that

require superpolynomial time as being intractable.

The class NP contains those decision problems that are "solvable" by a non-

deterministic polynomial-time algorithm. Such an algorithm, in a sense, tries all

possibilities simultaneously, applying polynomial-time computation to each guess in

parallel. This type of algorithm should not be confused with a parallel implementation

of a deterministic algorithm. If any of the computations results in a yes or possibly a

no, then the algorithm is a success. The algorithm is successful if it works, even if the

answer to the current decision problem is negative. The non-determinism concerns

the multiplicity of paths, and not whether the search is successful. It is easy to see

that if we can do many computation paths in parallel and one of these is completed

in polynomial time, then we can do that one alone in polynomial time. Therefore

P C NP.

Most mathematicians believe that the classes P and NP are different classes,

although it has not yet been proven that P ^ NP. The class P, loosely, consists of

those problems that can be solved quickly, while the class NP consists of problems

for which a solution can be verified quickly. We define a problem X as NP-hard if

every problem instance in NP can be reduced to an instance of X in polynomial

time. A problem is NP-complete if it is in NP and is NP hard. We now have the

class of P in the class of NP, but the problems that are AT-complete are also in

NP, so a problem in P is probably not TVP-complete. Since no one has come up with

a polynomial algorithm for a iVP-complete problem, thus proving that P = NP,

we can assume the intractability of iVP-complete problems. Problems that on the

surface seem no harder than sorting, graph searching, or network flow are in fact

JVP-complete. Thus, it is important to become familiar with this class of problems.

For a detailed discussion of iVP-completeness see Cormen, Leiserson, and Rivest[Ref.

5] or Garey and Johnson[Ref. 6].

II. EXISTING ALGORITHMS

Ore's book "The Four-color Problem" [Ref. 7] shows that considerable litera-

ture in the field of graph theory deals with the coloring of graphs. Many algorithms

exist for graph coloring, but there are only a few fundamentally different approaches

to the problem. Finding the exact chromatic number of a graph is a NP-complete

problem, so it is no surprise that no fast algorithm exists. We will explain two such

algorithms and it should then be obvious to the reader why they are impractical.

A. EXACT ALGORITHMS
1. Brute-Force Coloring
The different ways to color a graph are not unique. There may be several

proper colorings of graph G using x{G) colors. There also exist many improper

colorings of that same graph. How many different colorings of G are there? A

coloring of the n vertices in V using a palette P of order k is a mapping / : V -> P.

If we use all of P, the mapping is onto. Then there are .

(*)*"-(fc-i)<*-iJ-+G-2)(*-2>"+-+f-i>t-,(i)1"
different colorings, and if k > x{G) one or more of these colorings is proper. We could

easily program a computer to produce these colorings and for each, check to see if

the coloring is proper. But the cost of computation would be exorbitant. Using the

formula above we see that the number of colorings gets outrageous very quickly. For

example, let re = 10, then if k = 2 there are 1022 different colorings. If k = 3 there are

55,977 colorings and if k = 4 there are 818,521 different colorings. If we wanted to

color a large graph in this way, say n — 100, and k = 2 there are 1.267 * 103Odifferent

colorings.

2. Greedy-Backtracking Coloring

Given G, this algorithm finds x(G) if given a starting palette of fewer than

x(G) colors. It performs an extensive routine of trying to color the graph with the

palette given, and if it determines that the palette is not large enough then another

color is added to the palette. Eventually enough colors appear on the palette to

successfully color the graph.

The most significant problem with this algorithm is to determine the starting

number of colors k. If k is too low, the algorithm consumes too much time backtrack-

ing and recoloring the graph and if k is greater than x then algorithm will greedily

color the graph with the available colors k and the resulting coloring may not be op-

timal. The clique number u (G) is clearly a lower bound on x(G), since the vertices

of the largest complete subgraph of G must all have separate colors. In small graphs,

u (G) is very close to x(G), but in larger graphs the difference can grow significantly,

as is shown in the next section.

B. APPROXIMATION ALGORITHMS

Several algorithms exist to approximate the chromatic number of an arbitrary

graph. Some are better than others. Most of these algorithms deal with finding the

largest independent set of vertices or the vertices of a maximal clique. To find the

largest independent set is a NP-complete problem, but to find a large one can be done

in polynomial time.

1. Independent Sets
The approximation algorithm for the independent set problem is based on two

assumptions: (1) a vertex of high degree is harder to color than a vertex of low degree;

(2) coloring many vertices with the same color is good. Recall that a(G) = w(G) is

the order of a largest independent set of the vertices in G. Clearly the vertices in

an independent set can be colored with the same color, therefore x(G) < n/a(G),

where n = \V\. In small graphs, n/a{G) tends to be smaller than u (G), but in larger

graphs n/a(G) is a much closer lower bound to xiß).

Let /(n, p) = E (a) be a function to find the expected value a(G) for a random

graph G of order n and edge probability p. With this information we can estimate x-

In principle we can find an independent set of order E (a), and delete it. Now we have

a graph of order n - /(n,p) = nx. We continue on the same way until E (a) = 0 and

thus x(n,p) = i + x{m-f(m,P),P) > n/a(G), for i = 0,1,2,.... Note: u{G) = 5(G)

for graphs with edge probability p = .5 and in particular x(1000,.5) = 85, but

5(1000, .5) = 15 and n/5(1000,.5) = 67. This points out a very peculiar problem

with graphs of large order and density. That is to say, u(G) is a very poor estimator

while n/a(G) is a good estimator of x(G) for graphs of large order and density.

2. Vertex Covers
In a graph G, if a set A C V (G) is a vertex cover then there are no edges

in A~, an independent set. Thus any minimum vertex cover is the complement of

a maximum independent set, and so a(G) + ß (G) = n, where n is the order of

G. The vertices in a minimum vertex cover are the only vertices considered in the

coloring problem; all other vertices are part of the independent set and require only

one additional color. Therefore ß (G) + I > x(G). Another upper bound on x{G)

that is worth considering is A (G) + 1. Both errors can be relatively large, though.

The vertex cover problem is known to be iVP-complete (see Cormen[Ref. 5]).

Nevertheless, there exist good algorithms to find a vertex cover that is near optimal.

One such algorithm uses a set C, initially empty, and a set E containing the edges of

a graph G. We pick an arbitrary edge xy € E and add the vertices x and y to C, then

delete any edges in E covered by x or y. We pick another edge in E and continue

this procedure until E is empty. The computational complexity of this algorithm is

0 (m), where m is the size of G. The vertex cover produced by this algorithm is C,

which is at most twice the size of the optimal cover C*. Let A be the set of arbitrary

edges picked in the algorithm. No two edges in A share an endpoint, since all incident

edges to the endpoints are deleted before the next edge is picked. Therefore when

two vertices are added to C, \C\ = 2 \A\. Any vertex cover of A must contain at

least one endpoint of each edge in A. Since no two edges in A share an endpoint, no

vertex in the cover is incident on more than one edge in A. Therefore, \A\ < \C*\,

and |C| = 2|A|<2|C*|.

3. Maximum Clique
This algorithm, by Balas and Yu [Ref. 8], is a chordal subgraph approach for

finding the maximum clique problem. It has two main subroutines. The first algo-

rithm generates a maximal triangulated induced subgraph H of an arbitrary graph G

in a computational complexity of O (n + m). The second finds the minimum color-

ing of H, using the cardinality k of the maximum clique; then appends vertices to H

while maintaining its chromatic number, until the resulting graph becomes a maximal

fc-chromatic induced subgraph F of G. If F = G, we are done, since the maximum

clique in H was also maximum in G. Otherwise we branch to subproblems consider-

ing any clique larger than the current one must contain one of the vertices in V(G)

but not in V (F). We now apply the same procedure above on the new subproblems,

each defined on a vertex set contained in the neighbor set of v € V (G) /V (F). For

the results of this algorithm and the different variations applied to it see Balas and

Yu[Ref. 8].

4. Minimal Weighted Coloring of Chordal Subgraphs

The algorithm in the previous section was modified by Balas and Xue [Ref. 9]

to find the minimum weighted clique and thus a coloring of a chordal subgraph H of

G. They then extended the algorithm to include an ordering r of the vertices V\H.

This ordering r is used to add remaining vertices to the correct color class until a

maximal induced subgraph F with the same minimum weighted coloring of H results.

The final step is to modify the branching rules described by Balas and Yu [Ref. 8] to

include the minimum weighted coloring and define the subproblems to reapply in the

algorithm until it finds the maximum weighted clique.

10

5. Edge-Maximal Chordal Subgraph
The algorithm by Xue [Ref. 4] involves n iterations. Each iteration augments

the partial perfect elimination ordering and adds a vertex, together with some edges,

to the partial chordal subgraph. What sets this algorithm apart from algorithms

like that of Dearing et al.[Ref. 10] are the way in which it chooses the next vertex

to add into the partial chordal subgraph, and the way in which it chooses the first

successor of a given vertex. We use a greedy approach in both instances. During an

iteration, we call the vertices in the partial perfect elimination ordering labeled and

the rest unlabeled. Let U be the set of unlabeled vertices and H = (V(H),E(H))

be the partial chordal subgraph. For every unlabeled vertex v G U, we assign v

a temporary first successor t(v) and a label s (u), where t (v) G V(H). The label

s (v) = 1 + |TV (v) n SUCH (t (v))\ is the maximum number of edges that can be added

into H if v is added into H next with t (v) being its first successor. We initially set

t{v) = 0, no temporary first successor and s (v) = 0, Vt> € V. We choose the next

vertex v G U to label and add to H such that 5 (v) = max{s(u)|u G U}. Ties go to

the vertex v with the largest degree. We add all the edges to t(v) or to a vertex in

SUCH (t {v)): We update t (u), s (u) : For all u G iV (u) n U, let ru be the number of

neighbors of u in H that are either v or a successor of v. If ru < s (u), set v as the

temporary first successor of u and update s (u), i.e., let ru = 1 + \SUCH (V) 0 N (u)\.

If ru > s (u), set t (u) = v, s (u) = ru.

11

12

III. A SUPERGRAPH HEURISTIC

The basic idea is, given G, to find S, a minimum cardinality chordal supergraph

of G. We could then color S, and let G inherit the result. What makes this a topic

worthy of research is the fact that the first step is iVP-complete. We get around this

by finding a minimal chordal supergraph of G, ideally containing as few edges of G

as possible.

In this chapter we introduce and explain an experimental scheme for coloring

an arbitrary graph. We have developed a basic algorithm which will be modified in an

attempt to improve its performance. Each experiment consists of the generation of 100

random graphs of order 7 to 20, to which the algorithm is applied. An implementation

in the MATLAB programing language is given in the Appendices for all functions

whose names appear here in the verbatim typeface.

A. THE IDEAL ALGORITHM
The ideal supergraph algorithm for the coloring an arbitrarygraph G consists

of finding the closest edge-induced chordal supergraph S of G. We color S with a

simple greedy coloring algorithm, capitalizing on the perfect ordering of the chordal

graph S, and then let G inherit the coloring. At a minimum we have x (S) > x(G) and

if only a few inconsequential edges were induced to find S then possibly x (S) = x{G)-

The following algorithm depicts the ideal coloring algorithm.

Ideal Algorithm
Input: Graph G
Ouput: Optimal coloring of a minimal chordal supergraph S

begin
S := minimum edge-induced supergraph of G;
7 := coloring of S;
H inherits the coloring 7;

end;

13

V|

K„

E

ß

S1 S2 s3 Si 'm e+p

G ■

H
e-q

Figure 3. The Ideal Algorithm starts with an arbitrary graph G, computes a maximal
chordal subgraph H, and then builds a supergraph S while minimizing p. (/? = QJ)

The problem with this algorithm is that of finding the chordal supergraph S.

We propose, as depicted in Figure 3, to find a maximal chordal subgraph H of G and

then find a chordal supergraph S minimizing the number of edges p.

B. THE BASIC ALGORITHM
This algorithm, implemented in the function project 1 .m, is the basis for the

improved algorithms which follow. Generally speaking, it produces a random graph,

ensures the graph is connected, and computes its chromatic number (see figure 4). It

then finds a maximal chordal subgraph of the random graph and a minimal chordal

supergraph of both graphs. Lastly it computes the relative difference between the

14

G: 3,b 4,r

/7- <*5,b

H: 7,b 6,r

-^5,b

S:

in

7,b 8,r

2/r Z-^ ^£- -?»4,b

^ . X ^?V — 6,b 8,r «^ 0>^^ / 6,r «* ^V -3,g 1 ,r * ^\ /
8,b 7,r 2,b 3,r 5,r 2,b

X (G) = 2 X(H)- 2 X (S) = 3

Figure 4. The Basic Algorithm starts with an arbitrary graph G, computes a maximal
chordal subgraph H, and then builds a supergraph 5*. Graphs H and S vertices are
in the perfect elimination ordering 8.

chromatic numbers of the supergraph and the original graph.

1. Random Graph Generation
The basic Algorithm A, step 1, generates a random input graph G = (V, E)

of order n and size m, with vertices labeled as v\,..., vn. A random sparse adjacency

matrix is generated by the function unigraph.m and is used to represent the undi-

rected graph G. An edge in G exists between the vertices u,- and VJ, represented by a

1 in the (i,j) entry of the adjacency matrix, with probability p, where 0 < p < 1.

2. Test for Connectedness
The function to ensure that a graph is connected uses a depth-first search

algorithm and has computational complexity of 0(n + m) as discussed in Roberts

[Ref. 11, page 445]. For a detailed discussion of depth-first search see Tarjan [Ref.

12]. Since a graph of order n has at most (™) edges, we have 0(n2) steps. In this

function each time we traverse down a path to the end and return to the beginning

without visiting every vertex in the graph we identify a connected component of the

graph. When a disconnected graph is discovered we discard the graph and return to

step one.

The function connect.m starts with a list v containing the initial vertex v\

and visits each vertex using depth-first search. At each vertex u; there are three

possibilities: (1) there are adjacent vertices which have not been added to the list of

vertices v, in which case we pick the lowest-indexed vertex, add it to the list u, delete

15

the edge and continue the search from the new vertex; (2) there are adjacent vertices,

but all of them appear in the list v, thus we delete all the edges and backtrack on the

list v until we find an adjacent vertex and continue the search; or (3) there are no

adjacent vertices, in which case we backtrack on the list v as described in case two.

If in the process of backtracking to find an adjacent vertex we end up at the initial

vertex v1 and \v\ ^ n, then we have found a connected component in a disconnected

graph.

3. Maximal Chordal Subgraph Computation

A maximal chordal subgraph H of the input graph G is computed in step

two of the basic algorithm. H is found by using an algorithm of Dearing, Shier and

Warner [Ref. 10]. This is a polynomial algorithm used in optimization problems to

solve large systems of linear equations. The algorithm has worst-case time complexity

<9(mA), where A denotes the maximum vertex degree in G. The mchord.m function

is given a starting vertex vx and the sparse adjacency matrix for <?, and produces

a list of vertices denoting a perfect elimination ordering and a list of edges for the

maximal chordal subgraph found.

The function mchord. m generates a perfect elimination ordering list v, starting

with the first vertex given. It maintains a list s of all the vertices of G not in v and

a list E of all the edges in the maximal chordal subgraph. It also builds an incidence

matrix N of order nxn containing a 1 in the (i,j) entry if vertex i is adjacent to

vertex j when both vertices have been considered in the maximal chordal subgraph.

The matrix iV is initialized to all zeros and list E is empty at the beginning of the

procedure. The next step in the mchord.m function is to generate a loop to visit each

vertex in graph G. The current vertex is denoted v0. Step one in the loop is to find

all the vertices adjacent to v0, using a function adj .m.

The function adj .m is given the adjacency matrix G and a vertex v0. The

function determines the vertices adjacent to v0 by examining the tth row, representing

v0, of the matrix G and returning the indices of all columns j which include a 1 in

16

the (i,j) position. The function returns a list u of column indices representing the

adjacent vertices and a list E of edges incident to v0.

For each vertex u that is adjacent to the current vertex uo, if N(u) C N(v0)

then N(u) := N(u) U {v0} and E := E U {u, v0}. In other words, if the neighborhood

of u is a subset of the neighborhood of v0 we increment the value for the vertex u in

the set N and add the edge to E. At this time we eliminate the edges which have

been added to the subgraph from the adjacency matrix G, so that they will not be

considered again later.

From the set N we choose the vertex with the largest value to become our new

v0 and we add it to the list of v and eliminate it from the list of s. Now we repeat the

procedure until all the vertices in G are added to the list v. The result is the reversal

of a perfect elimination ordering of G.

4. Missing Edges

The functions mkadjmat.m and mkedges.m are used to derive an adjacency

matrix from a list of edges and to create a list of edges from an adjacency matrix,

respectively. When we subtract the adjacency matrix H from the adjacency matrix

G, we produce an adjacency matrix F representing the edges of G missing from H.

The list of missing edges is denoted em = ({vi,Vj}\vi is adjacent to Vj and Vi,Vj £ F).

Anytime we reorder the vertices of H we must translate the list of missing edges era

into the new ordering using the function trans.m.

5. Maximum Clique

The clique number u(H) = x{H), since H is a chordal Perfect graph. It

is trivial that x(H) ^ x(@)- Therefore, we use u(H) as a lower bound on x(G),

because it is the easiest to find. The algorithm to find the maximum clique of a

chordal graph by Gavril [Ref. 13], has a computational complexity of 0(n + m). We

use this algorithm in the function mclique.m to determine the OJ{H). We maintain

a list S which holds the number of times the lowest-indexed vertex was a member

17

of a previous clique. As we visit each vertex in the perfect elimination ordering we

determine its neighbors and store them in x. If x = 0 then the current vertex has no

neighbors and it is its own maximal clique. If x ^ 0 then we only need to consider the

neighbors of higher index in the perfect elimination ordering since all vertices of lower

order would have been eliminated and not considered in finding the next maximal

clique. We store these vertices in X. We now update the value in S for the smallest-

indexed vertex u in X by S(u) = max{5(u), \X\ - 1}. If the number in S of the

current vertex is less than the current maximal clique, we output the maximal clique

X and update the maximal clique number if the current maximal clique is larger. If

the number in S is equal to or greater than current clique number, then the maximal

clique has already been identified and we continue. In layman's terms, we visit each

vertex in the perfect elimination ordering, cutting off the portion of the graph we just

visited. We then look forward, relative to the ordering, and determine the maximal

clique. If it is larger than the current clique number we update the clique number

and move on until we reach the end of the perfect elimination ordering.

6. Greedy-Backtracking Coloring Scheme

The greedy-backtracking coloring scheme uses an algorithm defined by Bender

and Wilf in [Ref. 14]. They give a detailed analysis of the run-time complexity of

this algorithm on arbitrary graphs. The idea is to visit each vertex in the order given

and determine which of its neighbors have been colored. We always start with the

cheapest (or lowest) color and, having greedily colored the first k vertices, find the

cheapest available to color the current {k + l)st vertex. This algorithm must be given

a palette of available colors, and if in visiting a current vertex we run out of available

colors, we simply backtrack to the last vertex colored and determine if it is possible

to increase the color to a (the next highest). If it is possible to increase the color we

do and continue our search. If it is not possible we must backtrack further, erasing

the current coloring scheme until we find a vertex color which can be increased. If

in the backtracking process we return to the initial vertex, then we did not supply a

18

sufficient number of colors in the palette. In this case we must increase the number of

colors available on the palette and try the procedure again. The algorithm terminates

with a coloring that uses the least number of colors necessary for an proper coloring

scheme of the graph. This least number of colors is of course x(Gf).

7. Maximum Cardinality Search

The vertices of chordal subgraph H are ordered in the original perfect elim-

ination ordering returned by the mchord.m function and, consequently, most of the

missing edges are at the front of the ordering. It would be more beneficial for our

algorithm to have the missing edges towards the back of the ordering, since these are

the vertices considered early in the edge completion scheme. We use the maximum

cardinality search (MCS) algorithm described in Tarjan[Ref. 15], to reorder the ver-

tices of the subgraph H into a new perfect elimination ordering. The computational

complexity of this algorithm is 0{n + m). The function mcs .m uses a list x of size | V|

representing each of the vertices, which is initially set to zeros. Each time a vertex

visited all of its neighbors the value on list x is increased by one. We use the vertex

with the highest number on the list x as our next vertex to visit. We add this vertex

to the list v and then continue the search. The algorithm terminates when all the

vertices have been added to v. The list v represents the perfect elimination ordering

of H. This new ordering ends with the first vertex of the old perfect elimination

ordering, and is still a perfect elimination ordering since the subgraph H is chordal.

8. Edge Completion
We now use a procedure first described by Grone, Johnson, et al in [Ref. 16] to

perform a edge completion sequence on the chordal graph until all missing edges have

been reinserted. This results in a supergraph of the input graph. The computational

complexity of this procedure is 0(n2). In the function complete.m we start at the

last vertex in the perfect elimination ordering and connect it to the remaining vertices

starting with the next highest. Each time an edge in added to the graph we check to

19

see if it is on the list of missing edges. If it is on the list of missing edges we eliminate

it from the list and continue the procedure until the list is empty.

9. Greedy Coloring
Finally we perform a procedure on the chordal supergraph to determine its

chromatic number with the function grcolor .m. This function takes advantage of the

input chordal graph in a perfect elimination ordering. Since S is a perfectly orderable

graph, applying the greedy coloring algorithm produces an optimal coloring of the

graph in 0(n). Each vertex is colored using the cheapest available color until all have

been colored.

C. IMPROVED ALGORITHMS
With these improved algorithms we want to reduce the relative difference in

the chromatic numbers of the original arbitrary graph and the chordal supergraph.

First we experiment with manipulations on the arbitrary graph and then we examine

some special ordering of the chordal graphs.

1. Vertex Sort Algorithm
This variation is based on the assumption that a better perfect elimination

ordering is produced for the subgraph H when the vertices of G are pre-sorted by

degree, highest first. This perfect elimination ordering might facilitate the selection of

the supergraph S that would minimize the amount of added edges. In this variation we

sort the vertices of the arbitrary graph G with the function versort .m. The vertices

with the highest degree are considered first in the function mchord.m. Thus, the

resulting maximal chordal subgraph H has an improved perfect elimination ordering.

This algorithm is incorporated in the function project2.m.

2. Missing Edge Algorithm
This variation presupposes that a better perfect elimination ordering is used on

the maximal chordal subgraph H if the vertices of H are presorted so that the vertices

20

with the most missing edges are considered first in the edge completion algorithm.

The resulting supergraph S should contain the minimal number of unnecessary edges.

D. COMPUTATIONAL COMPLEXITY

The most time-consuming function in this algorithm is the greedy-backtracking

coloring function gbcolor.m, which is an inefficient non-polynomial time algorithm.

All other functions in these algorithms run in polynomial time (see Table I). The

inefficiency of gbcolor.m has limited us to graphs of order 20 or less. We presume

another limiting factor in this algorithm is the programming language MATLAB.

MATLAB Function Worstcase Run-time

unigraphl.m 0{n2)
connect1.m 0(n + m)
mchord.m O(mA)
mclique.m 0(n + m)
gbcolor.m non-polynomial time
mcs.m 0(n + m)
complete.m 0(n2)
grcolor.m 0(n)

Table I. Computational Complexity.

21

22

IV. EXPERIMENTAL RESULTS

The algorithms in chapter III were implemented in MATLAB and tested on

100 random graphs of various densities (where density is the probability of an edge

existing between any two vertices), having an order of 7 to 20. The projects were run

on a HP700/15 workstation. Table II summarizes the results. The results are stated

in the framework of the relative error between computing the actually chromatic

number of the graph G and the chromatic number of the chordal supergraph S.

A. GRAPH ORDER
As can be seen from Table II and Figures 5 - 7, relative error increases with

the order of the graph. Problem difficulty for our algorithms increases as well, which

is not peculiar to our approach, but is intrinsic to the nature of the problem. Graphs

Basic Algorithm
4.5

4-

3.5

i? 3
"5
o

"J2.5
CD >
I
CD
cc 2

1.5

0.5

Edge Probability

p = .1 : solid
p = .2 : dotted
p = .3 : dashed
p = .4 : dash dot
p = .5 : circles

12 14
Graph Order: |V|

Figure 5. Relative error of x versus graph order. Note: This is discrete data. Relative
error has been represented by continuous lines for clarity only.

23

4.5

3.5

* 3

'S
o

^2.5
>
CD
rr 2

1.5-

0.5

Vertex Sort

Edge Probability P

P = .1 solid

P = .2 dotted

P = .3 dashed

P = .4 dash dot

P = .5 circles

10 12 14
Graph Order: |V|

16 18 20

Figure 6. Relative error of x versus graph order. Note: This is discrete data. Relative
error has been represented by continuous lines for clarity only.

of large order tend to be harder to color due to the increased complexity of the graph.

We are limited to graphs of order 20 due to the excessive use of computer time. The

computation time of the function gbcolor.m to compute the exact x(G)in graphs

larger than order 20 was too excessive. The Missing Edge algorithm shows promise

because the relative error is less than the other two algorithms even in the higher

orders. On the other hand, the Vertex Sort algorithm does not perform as well in

the lower orders as the other two algorithms, and does not show promise for further

research. The Basic algorithm was used in this circumstance to provide a basis to the

improved algorithms.

B. GRAPH DENSITY
The density of the graph is derived from the probability p that a given edge

occurs. As can be seen from Table II and Figures 5 - 7, the density of the graph

24

Edge Sort Algorithm

3.5

*2.5
o

LU 2
CD > -a

CD
0C1.5

0.5

Edge Probability: p

p = .1 : solid
p = .2 : dotted
p = .3: dashed

p = .4 : dash dot
p = .5 : circles

10 12 14
Graph Order: |V|

16 18 20

Figure 7. Relative error of x versus graph order. Note: This is discrete data. Relative
error has been represented by continuous lines for clarity only.

has a peculiar effect on the performance of all the algorithms. The edge probability

p = .2 produces the largest error in all three algorithms at the higher order, and this

error appears to be increasing faster than when other probabilities are used. There

appears to be a peculiarity in the relative error of x for graphs with edge probability

between .1 and .3. Further research on the structure of random graphs with these edge

probabilities is required to shed some light on this peculiarity. Again, the Vertex Sort

algorithm shows little promise since the characteristics of Figure 6 shows no distinct

pattern of the.relative error in x for different probabilities p. The Missing Edge

algorithm shows promise especially in the probabilities p = .1 and p — .5.

C. CONCLUSION
In conclusion, we see that we have moved the NP-complete problem from the

coloring of an arbitrary graph to the choice of the correct maximal chordal subgraph

25

with the perfect elimination order which will produce the minimum chordal super-

graph of the arbitrary graph. If it were possible to choose this maximal chordal

subgraph accurately the relative error of x would be.

26

Relative Error in x Relative Error in x
V I p Proj 1 Proj 2 Proj 3 | V \ p Proj 1 Proj 2 Proj 3

14 7 .1 0.7567 1.4967 0.3550
.2 0.7250 1.2533 0.3483

.3 0.6417 1.0400 0.3367

.4 0.6775 0.9167 0.3800

.5 0.5567 0.7528 0.3458
8 .1 0.8233 1.5050 0.3300 15

.2 0.8525 1.3633 0.3142

.3 0.8733 1.3425 0.4817

.4 0.9392 1.1808 0.5958

.5 0.7720 1.0157 0.5190
9 .1 1.1317 2.5350 0.3783 16

.2 0.9533 2.9117 0.5317

.3 1.0950 2.8927 0.5250

.4 1.0377 2.2727 0.6973

.5 0.9182 1.9313 0.7360

10 .1 1.1633 1.9267 0.4233 17
.2 1.1608 1.7025 0.6500
.3 1.2358 1.6183 0.8433
.4 1.3308 1.5033 1.0408
.5 1.2335 1.2707 1.0678

11 .1 1.3250 2.0375 0.4250 18
.2 1.4575 2.0517 0.8692

.3 1.5475 1.9000 1.1250

.4 1.4802 1.5835 1.1617

.5 1.4372 1.5022 1.3178

12 .1 1.5400 1.9325 0.5767 19
.2 1.7483 2.1683 1.0833
.3 1.9792 2.2050 1.5350
.4 1.7282 1.8432 1.5872
.5 1.5663 1.6390 1.4885

13 .1 1.6842 2.1600 0.6083 20
.2 2.0250 2.3608 1.3875
.3 2.0990 2.2798 1.8528
.4 1.9398 2.0550 1.7923
.5 1.6952 1.7450 1.5998

.1 2.1717 2.4967 0.7867

.2 2.2308 2.6592 1.6900

.3 2.3817 2.5975 2.1550

.4 2.0807 2.1505 1.9615

.5 1.8233 1.8813 1.7347

.1 2.0600 2.5350 1.0317

.2 2.4900 2.9117 1.9367

.3 2.5752 2.8927 2.4152

.4 2.1815 2.2727 2.0757

.5 1.8322 1.9313 1.7913

.1 2.4067 2.8142 1.1417

.2 2.9792 3.2125 2.5150

.3 2.8463 2.9962 2.6250

.4 2.4402 2.4803 2.3655

.5 2.0250 2.1163 1.9518

.1 2.3400 3.2717 1.6533

.2 3.2992 3.6250 2.8958

.3 2.9123 3.0895 2.7620

.4 2.4982 2.5863 2.4300

.5 2.1265 2.1827 2.0468

.1 2.3292 3.1825 1.6767

.2 3.6058 3.7708 3.0058

.3 3.0758 3.1702 2.9245

.4 2.6853 2.7108 2.6468

.5 2.1828 2.2433 2.1255

.1 3.2308 3.7942 2.2975

.2 3.6065 4.0438 3.2207

.3 3.2637 3.4208 3.1165

.4 2.7017 2.7897 2.6507

.5 2.1265 2.3386 2.2340

.1 3.1625 3.8025 2.3800

.2 4.1508 4.2950 3.8142

.3 3.4603 3.5655 3.3695

.4 2.8642 2.9357 2.7575

.5 2.1828 2.5000 2.3759

Table II. Experimental Results of the Supergraph Heuristic.

27

28

V. FURTHER RESEARCH

We have given a new approach to coloring an arbitrary graph with the use of

a supergraph heuristic. With higher order graphs the relative error of the estimate

is larger than anticipated, however the procedure for computing the estimate is a

polynomial-time algorithm. The Edge Sort preprocessing algorithm shows promise

of improving the relative error of the estimate and should be further studied for

continued improvement. The main area for further research will be in the choice of

the maximal chordal subgraph which will produce the minimum chordal supergraph.

If this choice can be performed accurately our relative error would be next to nothing.

It follows from the work of Grone, Johnson, et al. that if G' is any chordal

supergraph of G, and if His the chordal subgraph of G produced by Maxchord or

some related algorithm, then there exist a chordal completion sequence containing

both H and G'. Finding such a sequence would be ideal. Since the algorithm for

generating such sequences is completely driven by perfect elimination orderings, our

problem reduces to that of finding an optimal perfect elimination ordering for H.

Further study is required in the analysis of the relative error of the estimate

for the data in Table II and for larger graphs. To acquire data from larger graphs

we must compile our programs into a more efficient programing language, possibly

UNIX C.

29

30

APPENDIX A. PROGRAM FOR BASIC
ALGORITHM

'/, Loren Eggen Project #1 revised 30 May 97

p=.l; '/, probability of edge present

fid=fopen(,Results2/projectl.out','a');

fprintf(fid,'Project #l\n');
fprintf (fid,'Edge probability in Arbitrary Graph is:'/,4. lf\n',p) ;

fprintf (fid, ' Matrix Ave. Chromatic Numbers ElapsedW);

fprintf(fid,' Size Actual New Error Time\n');

fclose(fid);
for i=7:20

M=[];
k=0;
t=clock;
while k < 100;
v=D;
while length(v) ~- i

G=unigraphl(i,p);
[v,e]=connectl(G,l);

end;
[vl,el]=mchord(G,l);
H=mkadjmat(el,i);
F=G-H;
em=mkedges(F); clear F;
if "isempty(em);
Hl=H(vl,vl); clear H;
eml=trans(vl,em);
cl=mclique(Hl);
vcl=gbcolor(G,cl);

ac=max(vcl); clear G;
v2=mcs(Hl,l);
H2=Hl(v2,v2); clear HI;
em2=trans(v2,eml);
S=complete(H2,em2);

c2=mclique(S); clear H2;
v=fliplr(l:length(S));
vc2=grcolor(S(v,v),c2);

nc=max(vc2); clear S;
M=[M;i ac nc (nc-ac)/ac] ;

'/, order of arbitrary graph G
'/, initialize storage matrix
'/, initialize k
'/, start clock
'/, generate k graphs
'/, initialize v
'/, loop for undirected connected graph
'/, generate a random undirected graph G

'/, check if G is connected

'/, end while
*/, find the maximal chordal subgraph H
'/, make adjancency matrix for H
'/, determine missing edges
'/, make a list of missing edges
'/, if the original graph was not chordal
'/, reorder vertices of H to mchord peo-order
•/, translate missing edges to new order
*/, maximum clique of HI, lower bound of G
'/, color G using greedy-backtracking coloring

•/, chromatic number for G
'/, find peo ordering using max. card, search
'/, reorder vertices HI to mcs peo-order
'/, translate missing edges to new order
•/, complete H2 until missing edges are added

y, maximum clique of S
•/, reverse the ordering of S
'/, color S using greedy coloring
'/, chromatic number for S
'/, record results

31

k=k+l;
end;

end;
[n,m]=size(M);
aac=sum(M(:,2))/n;
anc=sum(M(:,3))/n;
adc=sum(M(:,4))/n;
tim=etime(clock,t)/60;

'/, increment k
'/. end if
'/, end while
'/, size of M
7, average actual chormatic number
'/, average new chormatic number
*/, average relative error
'/, elapsed time

fid=fopen('Results2/projectl.l.out','a');
fprintf (fid,' Edge probability in Arbitrary Graph is:'/,4. If \n' ,p);
fprintf (fid,' Matrix Chromatic NumbersW) ;
fprintf(fid,' Size Actual New Error\n');
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f 7,7.4f\n' ,M') ;
fprintf (fid,'Average :'/,5. Of */.7.0f °/.7.4f \n',aac,anc,adc);

fclose(fid);
fid=fopen('Results2/projectl.out','a');
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f '/.7.4f 7.8. If \n' ,i,aac,anc,adc,tim);

fclose(fid);
end; '/« end for

32

APPENDIX B. PROGRAM FOR THE
VERTEX SORT ALGORITHM

7, Loren Eggen Project #2 revised 30 May 97

p=.l; '/, probability of edge present

fid=fopen('Results2/project2.out','a');

fprintf(fid,'Project #2\n;);
fprintf (fid,'Edge probability in Arbitrary Graph is:'/,4. lf\n' ,p) ;

fprintf (fid,' Matrix Ave. Chromatic Numbers ElapsedW);

fprintf(fid,' Size Actual New Error Time\n');

fclose(fid);

for i=7:20

M=[];

k=0;

t=clock;

while k < 100

v=[];

while length(v) ~= i

G=unigraphl(i,p);

[v,e]=connect1(G,1);

end;

[Gl,v]=versort(G);

[vl,el]=mchord(Gl,l);

H=mkadj mat (e 1, i) ;

F=G1-H; clear Gl;

em=mkedges(F); clear F;

if "isempty(em);

Hl=H(vl,vl); clear H;

eml=trans(vl,em);

cl=mclique(Hl);

vcl=gbcolor(G,cl);

ac=max(vcl); clear G;

v2=mcs(Hl,l);

H2=Hl(v2,v2); clear HI;

em2=trans(v2,eml);

S=complete(H2,em2);

c2=mclique(S); clear H2;

v3=fliplr(l:length(S));

vc2=grcolor(S(v3,v3),c2);

nc=max(vc2); clear S;

order of arbitrary graph G

initialize storage matrix

initialize k

start clock

number of graphs to generate

initialize v

loop for undirected connected graph

generate a random undirected graph G

check if G is connected

end while

sort the vertices by highest degree

find the maximal chordal subgraph H

make adjancency matrix for H

determine missing edges

make a list of missing edges

if the original graph was not chordal

reorder vertices of H to mchord peo-order

translate missing edges to new order

maximum clique of HI, lower bound of G

color G using greedy-backtracking coloring

chromatic number for G

find peo ordering using max. card, search

reorder vertices HI to mcs peo-order

translate missing edges to new order

complete H2 until missing edges are added

maximum clique of S

reverse the ordering of S

color S using greedy coloring

chromatic number for S

33

M=[M;i ac nc (nc- -ac)/ac] ;

k=k+l;
end;

end;
[n,m]=size CM);
aac=sum(M(,2))/n;
anc=sum(M(:,3))/n;
adc=sum(M(:,4))/n;

'/, record results
'/, increment k
7. end if
'/, end while
°/, average actual chormatic number
'/, average new chormatic number
'/, average relative error
•/, average relative error

tim=etime(clock,t)/60; '/. elapsed time
fid=fopen('Results2/project2.1.out;,'a');
fprintf (fid,'Edge probability in Arbitrary Graph is:*/,4.1f\nJ ,p);

fprintf (fid,' Matrix Chromatic NumbersW);
fprintf (fid,' Size Actual New ErrorW);

fprintf(fid,J,/.5.0f y.7.0f %7.Of °/.7.4f\n' ,MJ) ;
fprintf (fid,' Average :'/,5. Of '/.7.0f '/,7.4f\n' ,aac,anc,adc) ;

fclose(fid);
fid=fopen('Results2/project2.out','a');
fprintf(fid,"/.5.0f */.7.0f 7,7 .Of '/.7.4f 7,8. lf\n' ,i,aac,anc,adc,tim) ;

fclose(fid);
end; '/. end for

34

APPENDIX C. PROGRAM FOR MISSING
EDGE ALGORITHM

'/, Loren Eggen Project #3 revised 30 May 97

p=.l; '/, probability of edge present

fid=fopen(,Results2/project3.out','a');

fprintf(fid,'Project #3\n');
fprintf (fid,'Edge probability in Arbitrary Graph is :'/,4. If \n',p);

fprintf(fid,' Matrix Ave. Chromatic Numbers Elapsed\n');

fprintf(fid,' Size Actual New Error Time\n');

fclose(fid);
for i=7:20

M=[];
k=0;
t=clock;
while k < 100

v=D;
while length(v) ~= i

G=unigraphl(i,p);
[v,e]=connectl(G,l) ;

end;
[vl,el]=mchord(G,l) ;

H=mkadjmat(el,i);

F=G-H;
em=mkedges(F); clear F;

if ~isempty(em);
Hl=H(vl,vl); clear H;
eml=trans(vl,em);
cl=mclique(Hl);
vcl=gbcolor(G,cl);

ac=max(vcl);

Gl=G(vl,vl); clear G;

F1=G1-H1; clear Gl;
[y,vs]=sort(sum(Fl)) ;
v2=fliplr(vs); clear Fl;

H2=Hl(v2,v2); clear HI;
em2=trans(v2,eml);

v3=mcs(H2,l);
H3=H2(v3,v3); clear H2;
em3=trans(v3,em2);

'/, order of arbitrary graph G
'/, initialize storage matrix
'/, initialize k

'/, start clock
'/, number of graphs to generate

'/, initialize v
'/, loop for undirected connected graph
'/, generate a random undirected graph G

'/, check if G is connected

'/, end while
•/, find the maximal chordal subgraph H

'/, make adjancency matrix for H
'/, determine missing edges
'/, make a list of missing edges
'/, if the original graph was not chordal
'/, reorder vertices of H to mchord peo-order
•/, translate missing edges to new order
'/, maximum clique of HI, lower bound of G
'/, color G using greedy-backtracking coloring

*/, chromatic number for G
•/, translate G into HI ordering

•/, find the max. edges missing

'/, sort by max. edges missing
'/, descending order
•/, sort HI max. edges missing first
*/, translate missing edges to new order
'/, find peo ordering using max. card, search
*/, reorder vertices HI to mcs peo-order

•/, translate missing edges to new order

35

S=complete(H3,em3);

c2=mclique(S); clear H3;
v4=fliplr(l:length(S));
vc2=grcolor(S(v4,v4),c2) ;

nc=max(vc2); clear S;
M=[M;i ac nc (nc-ac)/ac];

k=k+l;
end;

end;
[n,m]=size(M);

aac=sum(M(

anc=sum(M(

adc=sum(M(

,2))/n;

,3))/n;

,4))/n;
tim=etime(clock,t)/60;

'/, complete H2 until missing edges are added

'/, maximum clique of S
'/, reverse the ordering of S
•/, color S using greedy coloring

'/, chromatic number for S

'/, record results
•/, increment k

'/, end if
'/, end while

•/, size of M
'/, average actual chormatic number
'/, average new chormatic number

•/, average relative error

'/, elapsed time

fid=fopen('Results2/project3.1.out','a');

fprintf (fid,'Edge probability in Arbitrary Graph is:y,4. If \n',p);

fprintf(fid,'Matrix Chromatic Numbers\n');

fprintf(fid,' Size Actual New Error\n');
fprintf(fid,"/.5.0f y.7.0f y.7.0f '/.7.4f \n',M');
fprintf (fid,'Average :'/,5. Of */.7.0f y,7.4f \n',aac,anc,adc);

fclose(fid);
fid=fopen('Results2/project3.out','a');
fprintf(fid,"/.5.0f '/.7.0f '/.7.0f °/.7.4f '/.8. If \n' ,i,aac,anc,adc,tim) ;

fclose(fid);
end; '/• end for

36

APPENDIX D. GRAPH COMPLETION
FUNCTION

function A=complete(A,el)

'/, function A=complete(A,el)

'/.
'/, This function is a graph completion function for the thesis project.
'/, Input a peo ordering v, a list of edges e from a maximal chordal subgraph,
'/. and a list of edges el necessary to make a super-hypergraph of the original

'/, graph. The output is a chordal supergraph.

'/, by Loren G. Eggen, 14 April, 1997.

A=A+speye(size(A));

[n,m]=size(A);

v=l:n;
p=sum(A); q=find(p~=n);

v=(v(q));
while "isempty(el)

k=length(v);
l=max(find(~A(v(k),:)));

if "isempty(l)
ez=[v(k) 1];
e=[e; ez] ;
A(v(k),l)=l;
A(l,v(k))=l;

end;
if sum(A(v(k),:))==n
h=find(v"=v(k));

v=v(h);

end;
[a,b]=size(el);

for i=l:a
if all(el(i,:)==ez I el(i,:)==fliplr(ez))

if a==l

el=[];
break;

else
x=l:a;
x=x(find(x~=i)) ;

add loops
of vertices
list of vertices
eliminate and full
vertices from list v
loop for all missing edges

vertix by peo ordering
next highest missing edge

test if found next
edge to add ez
add edge to list
add edge in adjacency

matrix
end of if
test if vertix full
eliminate vertix from
list of vertices

end of if
a = length of missing edges

for each missing edge
test ez in missing edges

if yes and last then

empty list of missing edges

break for loop
if not last

set x
find missing edge = ez

37

el=el(x\:);
break;

end;
end;

end;

end;
A=A-speye(size(A));

*/, delete edge from list

'/, break for loop
'/, end inner if
'/, end outer if

'/, end for loop
'/, end of while
'/. eliminate loops

38

APPENDIX E. CONNECTED GRAPH
FUNCTION

function [v,e]=connectl(A,i);

function [v,e]=connectl(A,i);

This function will find a connected component in-the input graph A and
starting vertex i. It uses depth first search and outputs the vertices

and edges of the connected component.

% By Loren G. Eggen, 30 May, 1997.

v=i;
v0=i;
e=[];
n=length(A);
while length(v) < n

x=adj(A,i);
if "isempty(x)

t=0;
for j=l:length(x)

if isempty(find(x(j)==v))

v=[v,x(j)] ;
e=[e; i,x(j)] ;
A(i,x(j))=0;
A(x(j),i)=0;

i=x(j);
t=l;
break;

end;
end;
if ~t
for j=l:length(x)

e=[e;i,x(j)];
A(i,x(j))=0;
A(x(j),i)=0;

end;

1=1;
while sum(A(i,:)) == 0 & i "= vO

initialize list of vertices

first vertex
initialize list of deleted edges

number of vertices
loop till all vertices are added
adj. vertices to current vertex

if x is not empty
test variable if vertex is added
for all the adj. vertices
find 1st one not in list v
add it to the list v
update deleted edges
eliminate edge in adj. matrix
eliminate edge in adj. matrix
make new vertex current
set test variable true
break when new one found

end of if
end of for
if no new vertex but x not empty
for each adj. vertex which is on v
update deleted edges
eliminate edge in adj. matrix
eliminate edge in adj. matrix

end of for
set backtracking index
backtrack till edge is present

39

i=v(length(v)-l);
1=1+1;

end;
end;

elseif i == vO
break;

else

1=1;
while sum(A(i,:)) == 0

i=v(length(v)-l);

1=1+1;
end;

end;
end;

i "= vO

'/, backtrack list v
% increment index
% end of while
% end of if
'/, if x was empty and we returned to vO
'/, break while loop, output component
'/, not at the start but x is empty
'/, set backtracking index
'/, backtrack till edge is present

'/, backtrack list v
'/, increment index
'/, end of while
'/, end of if
•/, end of while

40

APPENDIX F. GREEDY-BACKTRACKING
COLORING FUNCTION

function [vc]=gbcolor(A,m)

'/.

'/.

'/.

7,
I
7.
7.

function [vc]=gbcolor(A,m)

This function uses the greedy-backtracking approach to
color the vertices of a graph so that no two colors are
together. Input the adjacency matrix of the graph and a
minimum number of colors. Output vc is the vector of vertix

colors.

'/, by Loren G. Eggen, 18 March, 1997.

i=l;
v=i;
vc=i;
n=length(A);
while length(vc) < n;

k=l;
i=i+l;
v= [v i] ;
x=adj(A(v,v),i);
xc=sort(vc(x));
for j=l:length(xc)

if xc(j) == k
k=k+l;

end;
end;
if k > m

i=i-l;
v=v(l:i);
vc=vc(l:i);
while length(v) > 1

t=0;
while vc(i) < m

vc(i)=vc(i)+l;
if ~any(vc(i) --

t=l; break;
end;

starting index
first vertex
first vertex color
number of vertices
used until all vertices have been colored

first color
increment index
vector of vertices visited
adjacent visited vertices of index

sorted colors
find the next available color
if current color used
increment color
end if
end for
if we run out of colors backtrack

decrement index
go back one vertix
eliminate last color if necessary
do not backtrack past 1
test variable to break backtrack
if the color is < max see if we can

increase the color
vc(adj(A(v,v),i))) '/. test if the color has been

'/, used if not use it and stop

'/. end if

41

end;
if t == 1

break;
end;

i=i-l;
v=v(l:i);
vc=vc(l:i);

end;
end;
if length(vc) < length(v)

vc=[vc k];

end;
if length(v) == 1 & t == 0

m=m+l;
end;

end;

'/, end while k < m
'/, found one that could be incremented

*/, break outer loop
7, end if
% decrement index
'/, go back one vertix
y, eliminate last color if necessary

•/, end while v > 1
'/, end if k > m
'/, if the inner loop did not
•/, update the color

'/, end if
y, if we have ran out of colors and
'/, backtracked to the origin increase

'/, the available colors

•/, end while vc < n

42

APPENDIX G. GREEDY COLORING
FUNCTION

function [vc]=grcolor(A,m)

•/.
7.
7,
7.
7.
7.

function [vc]=grcolor(A,m)

This function uses the greedy approach to color the vertices of a graph
so that no two colors are together. Input the adjacency matrix of the graph
and a maximum number of colors. Output vc is the vector of vertix colors.
Optimal coloring if the input graph is chordal and reverse order perfect

elimination scheme.

'/, by Loren G. Eggen, 23 April, 1997.

n=length(A);
k=l
i=l
v=i
vc=k;
while length(v) < n;

k=l;
i=i+l;
v=[v i] ;
x=adj(A(v,v),i) ;
xc=sort(vc(x));
for j=l:length(xc)

if xc(j) == k
k=k+l;

end;
end;

vc=[vc k];
if max(vc) > m
fprintf('colors used greater than

end;
end;

used until all vertices have been visited

first color
increment index
vector of vertices visited
adjacent visited vertices of index

sorted colors
find the next available color

if color used
incremet color

end if
end for
update the color
if we have ran out of colors

colors given\n\n');
end if
end while

43

44

APPENDIX H. MAXIMAL CHORDAL
SUBGRAPH FUNCTION

function [v, E] = mchord(A,i)

'/, function [v, E] = mchord(A,i)

'/, Returns the peo ordering of vertices and a set of edges
•/, which will generate a maximal chordal subgraph. Adjacency
'/, matrix A should represent a connected undirected graph.

*/, This function uses algorithm MAXCHORD, P.M. Dearing.

•/, by Loren G. Eggen, 6 February, 1997

'/, adj .m function called

'/, begin mchord

v=i;

n=length(A);
s=l:n;
s=s(find(s~=i));
C=zeros(n);
C=sparse(C);

E=[];
for j=l:n-l

[vl el]»adj(A,i);
for k=l:length(vl)

test = C(vl(k),:) I C(i,:);
if test == C(i,:)
C(vl(k),i)=l;
E=[E;ivl(k)];
A(i,vl(k))=0;
A(vl(k),i)=0;

end;
end;

[1 m]=max(sum(C(s,:)'));
v=[v s(m)] ;
i=s(m);
s=s(find(s~=i));

starting vertex v
number of vertices
list of vertices
delete first vertex from the list
initialize the set of adj. vertices

make matrix sparse
initialize set of edges
loop through all vertices except 1st
find adj. vertices to current
loop through each adj. vertex u
is set C(u) subset of C(v)

if so then
update C(u)
update set of edges
delete edge from adjacency matrix

both edges
end of if
end of inner for
find next vertex with largest card, in C
assign new vertex to reverse peo ordering
assign new vertex to current vertex v
delete v from list of vertices

45

end; '/• en<3 of outer for
v=fliplr(v); '/. peo ordering

'/, end of mchord

46

APPENDIX I. MAXIMUM CLIQUE
FUNCTION

function c=mclique(H)

'/, function c=mclique(H)

V.
'/, This function calculates the maximum clique number of a triangulated

'/, graph H, which is ordered by it perfect elimination scheme.

'/.

'/, by Loren G. Eggen, 21 April, 1997

'/, calls adj.in function

c=l;
[n,m]=size(H);
S=zeros(l,n);

a=l:n;
for i=l:n

X=[];
v=a(i);
[x,e]=adj(H,v);
for j=l:length(x)

if find(v==a) < find(x(j)==a);

X=[X x(j)];
end;

end;
if isempty(x), v; end;
if "isempty(X)
u=min(X);
S(u)=max(S(u),length(X)-l);

if S(v) < length(X)
[v X];
c=max(c,l+length(X));

end;

end;
end;

initial clique number
order of input graph
list, # if times vertices l:n visited

vertices l:n
loop for each vertex

initialize X
assign v current vertec
find adj. vertices to v
loop for each adj. vertex
if index of v < index of adj. vertices add
adj. vertex to the list of higher indices

end if
end innner for
if no adj. vertices v is cluque
if X not empty
u, smallest index in X
assign S(u) max. of current value or clique

if S(v) < current clique
print current clique
update maximum clique number

end inner if

end outer if
end for loop

47

48

APPENDIX J. MAXIMUM CARDINALITY
SEARCH

function [v] = mcs(A,i)

'/, function [v] = mcs(A,i)
y.
'/, Returns a vector of vertices which indicate
'/, a possible perfect elimination scheme. Adjacency
% matrix A should represent a connected undirected
y, graph. This function uses Maximum Cardinality Search.

•/. by Loren G. Eggen, revised 29 January, 1997

'/, adj .m function called

'/, begin mcs

v=i;

n=length(A);
x=ones(l,n);
for j=l:n-l

vl=adj(A,i);
x(vl)=x(vl)+l;
[k,l]=max(x) ;

v=[v 1];
x(v)=x(v)-x(v);
A(i,l)=0;
A(l,i)=0;
i=l;

end;
v=fliplr(v);

'/, 1st vertex in the peo

'/, number of vertices
*/, initialize cardinality vector x
'/, loop for each vertex
•/, find adj . vertices vl to current vertex
'/, update the cardinality of vertices in vl
'/, find the vertex in x with max. cardinality

'/, add new vertex to the peo list v
'/, zero the entries of x for vertices in v
•/, eliminate edges from adj . matrix
'/, eliminate edges from adj . matrix
'/, assign current vertex to the last vertex added

'/, end for loop
*/, reverse peo ordering

'/, end of mcs

49

50

APPENDIX K. MISCELLANEOUS
FUNCTIONS

function [v, e] = adj(A,i)

'/, function [v, e] = adj(A,i)

7.
'/, Returns a vector of adjacent vertices and a list of
'/, edges to the vertex i from the adjacency matrix A.

7.

•/, by Loren G. Eggen, 29 January, 1997

'/, no intrinsic functions called

*/, begin adj

v=[];
e=[];
for j=l:length(A)

if A(i,j)
v=[v j] ;
e=[e;i j];

end;
end;

y, end of adj

'/, initialize v
'/, initialize e
•/, for each element in row i

'/, if an edge exist
•/, update v, list of adjancect vertices
'/, update e, list of associated edges

•/, end if
y, end for

function A=mkadjmat(e,v)

*/, function A=mkadjmat(e,v)

y, Input a set of edges containing the numeric vertices e.g.
•/, e=[l 2;1 7;2 3;2 5;3 4;4 6;5 6;6 7] and maximum vertices v.
'/, Output an adjacency matrix of unidirectional graph.

y.

y, by Loren G. Eggen, revised 3 May, 1997

A=zeros(v,v);
[n,m]=size(e);

51

for i=l:n
A(e(i,l),e(i,2))=l;
A(e(i,2),e(i,l))=l;

end;
A=sparse(A);

function e=mkedges(A)

'/. function e=mkedges(A)

'/, This function makes a set of edges from the given

'/, adjancency matrix.

'/, by Loren G. Eggen, 11 April, 97

A=triu(A);
for i=l:length(A)

y=find(A(i,:));
e=[e;i*ones(length(y),l),y];

end;

function el=trans(v,e)

'/, function el=trans(v,e)

y.
'/, This function translates the edges into the new vertix ordering.

•/. by Loren G. Eggen, 14 April, 1997.

[n,m]=size(e);

for i=l:n
el(i,l)=find(e(i,l)==v); '/. translate the missing edges
el(i,2)=find(e(i,2)==v); '/. into the new ordering

end;

function [A] = unigrapl(n.p)

y. function [A] = unigrapl(n.p)
y.
•/, Generates an edge with probability p in an adjacency

y, matrix for a unidirected graph.

52

•/, by Loren G. Eggen, revised 29 May, 1997

'/, no intrinsic functions called

'/, begin

A=rand(n);
A=A(:,:)<p;
A=A-diag(diag(A)) ;

A=triu(A);
A=A+A';
A=sparse(A);

*/. end

function [S,v]=versort(A);

*/, function [S,v]=versort(A) ;

7.
'/, Label an adjacency matrix sorting by highest degree

'/, vertix in the matrix.

i=sum(A);
[y,j]=sort(i);
v=fliplr(j);

S=A(v,v);

'/, generate random 0-1 matrix nxn
'/, eliminate all entries > p

•/, eliminate diaganol
'/, eliminate lower triangular

'/, make symetric
'/, make matrix sparse storage

53

54

LIST OF REFERENCES

[1] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. American
Elsevier, New York, 1976.

[2] D. B. West. Introduction to Graph Theory. Prentice-Hall Inc., Upper Saddle
River, NJ 07458, 1996.

[3] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic
Press, New York, 1980.

[4] Xue J. Edge-maximal triangulated subgraphs and heuristics for the maximum
clique problem. NETWORKS, 24:109-120, 1994.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithm.
McGraw-Hill, New York, 1990.

[6] M.R Garey and D.S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., 1979.

[7] 0. Ore. The Four-Color Problem. Academic Press, New York, 1967..

[8] E. Balas and C.S. Yu. Finding the maximum clique in an arbitrary graph. SIAM
J. Computing, 15(4):1054-1068, 1986.

[9] E. Balas and J. Xue. Minimum weighted coloring of triangulated graphs, with
application to maximum weight vertex packing and clique finding in arbitrary
graphs. SIAM J. Computing, 20(2):209-221, 1991.

[10] P.M. Dearing, D.R. Shier, and D.D. Warner. Maximal chordal subgraphs. Dis-
crete Applied Mathematics, 20:181-190, 1988.

[11] F. S. Roberts. Applied Combinatorics. Prentice Hall, Englewood Cliffs, NJ.,
1984.

[12] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput-
ing, 1(2):146-160, 1972.

[13] F. Gavril. Algorithms for minimum coloring, maximum clique, minimum, cov-
ering by cliques, and maximum indepentent set of a chordal graph. SIAM J.
Computing, 1(2): 180-187, 1972.

[14] E. A. Bender and Wilf H. S. A theoretical analysis of backtracking in the graph
coloring problem. Journal of Algorithms, 6:275-282, 1985.

55

[15] R. E. Tarjan and Yannakakis M. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, and selectivity reduce acyclic hyper-
graphs. SI AM J. Computing, 13(3):566-579, 1984.

[16] Grone R., Johnson C. R., and Wolkowicz H. Positive definite completions of
partial hermitian matrices. Linear Algebra and its Applications, 58:109-124,

1984.

56

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dryer Rd.
Monterey, CA 93943-5101

3. Chairman, Code MA 1
Department of Mathematics
Naval Postgraduate School
1411 Cunningham Road, Rm 341
Monterey, Ca 93943-5216

4. Professor Craig W. Rasmussen, Code MA/Ra 3
Department of Mathematics
Naval Postgraduate School
1411 Cunningham Road, Rm 341
Monterey, Ca 93943-5216

5. Captain Loren G. Eggen 2
United States Military Academy
Department of Mathematical Sciences
P.O. Box 229
West Point, NY 10996

57

